Below are several Abstracts of studies done on Açai that have been published in peer-review journals. These are only the abstracts, but they give the gist of the study, and where you can find and/or purchase the fully published study.

J. Agric. Food Chem., 54 (4), 1222 -1229, 2006. 10.1021/jf052132n S0021-8561(05)02132-1
Web Release Date: January 12, 2006

Copyright © 2006 American Chemical Society

Açai (Euterpe oleracea Mart.) Polyphenolics in Their Glycoside and Aglycone Forms Induce Apoptosis of HL-60 Leukemia Cells

David Del Pozo-Insfran, Susan S. Percival, and Stephen T. Talcott*

Department of Food Science and Human Nutrition, University of Florida, P.O. Box 110370, Gainesville, Florida 32611-0370

Received for review August 30, 2005. Revised manuscript received December 2, 2005. Accepted December 6, 2005.

Abstract:

The effects of açai polyphenolics on the antiproliferation and induction of apoptosis in HL-60 human leukemia cells were investigated. Interactions between anthocyanins and non-anthocyanin-polyphenolics in both their glycosidic and their aglycone forms were also investigated to determine additive or nonadditive responses. Polyphenolic fractions at 0.17-10.7 μM were found to reduce cell proliferation from 56 to 86% likely due to caspase-3 activation (apoptosis). Anthocyanin and polyphenolic fractions were nonadditive in their contribution to the cell antiproliferation activity. At equimolar concentrations, the glycosidic forms of phenolic acids and flavonoids induced a higher magnitude of change in cell parameters (proliferation and apoptosis) than their respective aglycone forms, while the opposite trend was observed for anthocyanin aglycones. This study demonstrated that açai offers a rich source of bioactive polyphenolics and confirmed the importance of investigating whole food systems when evaluating the potential health benefits of individual phytochemical compounds.
Phytochemical Composition and Pigment Stability of Açai (Euterpe oleracea Mart.)

David Del Pozo-Insfran, Carmen H. Brenes, and Stephen T. Talcott*

Department of Food Science and Human Nutrition, University of Florida, P.O. Box 110370, Gainesville, Florida 32611-0370 and Department of Food Technology, ITESM-Campus Monterrey, E. Garza Sada 2501 Sur, C. P. 64849, Monterrey, N. L., México.

Received for review October 14, 2003. Revised manuscript received January 9, 2004. Accepted January 14, 2004.

Abstract:

Anthocyanin and polyphenolic compounds present in açai (Euterpe oleracea Mart.) were determined and their respective contribution to the overall antioxidant capacity established. Color stability of açai anthocyanins against hydrogen peroxide (0 and 30 mmol/L) over a range of temperatures (10-30 °C) was also determined and compared to common anthocyanin sources. Additionally, stability in a model beverage system was evaluated in the presence of ascorbic acid and naturally occurring polyphenolic cofactors. Cyanidin 3-glucoside (1040 mg/L) was the predominant anthocyanin in açai and correlated to antioxidant content, while 16 other polyphenolics were detected from 4 to 212 mg/L. Red grape anthocyanins were most stable in the presence of hydrogen peroxide, while açai and pigments rich in acylated anthocyanins displayed lower color stability in a temperature-dependent manner. In the presence of ascorbic acid, acylated anthocyanin sources generally had increased color stability. Açai was recognized for its functional properties for use in food and nutraceutical products.
Phytochemical and Nutrient Composition of the Freeze-Dried Amazonian Palm Berry, *Euterpe oleraceae* Mart. (Acai)

Alexander G. Schauss,*† Xianli Wu,¶ Ronald L. Prior,¶ Boxin Ou,¶ Dinesh Patel,¶ Dejian Huang,¶ and James P. Kababick#

Natural and Medicinal Products Research, AIMBR Life Sciences, 4117 South Meridian, Puyallup, Washington 98373, Agriculture Research Service, Arkansas Children's Nutrition Center, U.S. Department of Agriculture, 1120 Marshall Street, Little Rock, Arkansas 72202, Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, Arkansas 72205, Brunswick Laboratories, 6 Thatcher Lane, Wareham, Massachusetts 02571, Integrated Biomolecule Corporation, 2005 E. Innovation Park Drive, Tucson, Arizona 85755, Food Science and Technology Program, Department of Chemistry, National University of Singapore, Singapore 117543, Singapore, and Flora Research, 32158 Camino Capistrano, San Juan Capistrano, California 92675

Received for review April 6, 2006. Revised manuscript received July 4, 2006. Accepted September 5, 2006.

Abstract:

Euterpe oleraceae is a large palm tree indigenous to the Amazon River and its tributaries and estuaries in South America. Its fruit, known as acai, is of great economic value to native people. In this study, a standardized freeze-dried acai fruit pulp/skin powder was used for all analyses and tests. Among many findings, anthocyanins (ACNs), proanthocyanidins (PACs), and other flavonoids were found to be the major phytochemicals. Two ACNs, cyanidin 3-glucoside and cyanidin 3-rutinoside were found to be predominant ACNs; three others were also found as minor ACNs. The total content of ACNs was measured as 3.1919 mg/g dry weight (DW). Polymers were found to be the major PACs. The concentration of total PACs was calculated as 12.89 mg/g DW. Other flavonoids, namely, homoorientin, orientin, isovitexin, scoparin, and taxifolin deoxyhexose, along with several unknown flavonoids, were also detected. Resveratrol was found but at a very low concentration. In addition, components including fatty acids, amino acids, sterols, minerals, and other nutrients were analyzed and quantified. Total polyunsaturated fatty acid, total monounsaturated fatty acid, and total saturated fatty acids contributed to 11.1%, 60.2%, and 28.7% of total fatty acid. Oleic acid (53.9%) and palmitic acid (26.7%) were found to be the two dominant fatty acids. Nineteen amino
acids were found; the total amino acid content was determined to be 7.59% of total weight. The total sterols accounted for 0.048% by weight of powder. The three sterols B-sitosterol, campesterol, and sigmasterol were identified. A complete nutrient analysis is also presented. Microbiological analysis was also performed.

Agric. Food Chem., 54 (22), 8604 -8610, 2006. 10.1021/jf0609779 S0021-8561(06)00977-0

Web Release Date: October 7, 2006

Copyright © 2006 American Chemical Society

Antioxidant Capacity and Other Bioactivities of the Freeze-Dried Amazonian Palm Berry,* Euterpe oleraceae* Mart. (Acai)

Alexander G. Schauss,*† Xianli Wu,¶ Ronald L. Prior,¶ Boxin Ou,¶ Dejian Huang,¶ John Owens,¶ Amit Agarwal,# Gitte S. Jensen,© Aaron N. Hart,© and Edward Shanbrom▽

Natural and Medicinal Products Research, AIMBR Life Sciences, 4117 South Meridian, Puyallup, Washington 98373, Agriculture Research Service, Arkansas Children's Nutrition Center, U.S. Department of Agriculture, 1120 Marshall Street, Little Rock, Arkansas 72202, Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, Arkansas 72205, Brunswick Laboratories, 6 Thatcher Lane, Wareham, Massachusetts 02571, Food Science and Technology Program, Department of Chemistry, National University of Singapore, Singapore 117543, Singapore, University of California, Irvine, Building 55, 101 The City Drive South, Orange, California 92868, Natural Remedies, 19th K. M. Stone, Hosur Road, Bangalore 560100, India, and NIS Labs, 1437 Esplanade, Klamath Falls, Oregon 97601

Received for review April 6, 2006. Revised manuscript received August 31, 2006. Accepted September 5, 2006.

Abstract:

The fruit of *Euterpe oleraceae*, commonly known as acai, has been demonstrated to exhibit significantly high antioxidant capacity _in vitro_, especially for superoxide and peroxyl scavenging, and, therefore, may have possible health benefits. In this study, the antioxidant capacities of freeze-dried acai fruit pulp/skin powder (OptiAcai) were evaluated by different assays with various free radical sources. It was found to have exceptional activity against superoxide in the superoxide scavenging (SOD) assay, the highest of any food reported to date against the peroxyl radical as measured by the
oxygen radical absorbance capacity assay with fluorescein as the fluorescent probe (ORAC_{FL}), and mild activity against both the peroxynitrite and hydroxyl radical by the peroxynitrite averting capacity (NORAC) and hydroxyl radical averting capacity (HORAC) assays, respectively. The SOD of acai was 1614 units/g, an extremely high scavenging capacity for O_2^•-, by far the highest of any fruit or vegetable tested to date. Total phenolics were also tested as comparison. In the total antioxidant (TAO) assay, antioxidants in acai were differentiated into "slow-acting" and "fast-acting" components. An assay measuring inhibition of reactive oxygen species (ROS) formation in freshly purified human neutrophils showed that antioxidants in acai are able to enter human cells in a fully functional form and to perform an oxygen quenching function at very low doses. Furthermore, other bioactivities related to anti-inflammation and immune functions were also investigated. Acai was found to be a potential cyclooxygenase (COX)-1 and COX-2 inhibitor. It also showed a weak effect on lipopolysaccharide (LPS)-induced nitric oxide but no effect on either lymphocyte proliferation and phagocytic capacity.